
PHYSICAL REVIEW E MARCH 1997VOLUME 55, NUMBER 3
Experimental control of nonlinear dynamics by slow parametric modulation
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We provide experimental evidence that a slow parametric modulation can control dynamical regimes and
inhibit chaos in a nonlinear system. We demonstrate this effect in a loss-modulated CO2 laser. We show the
influence of the amplitude and frequency of the control modulation~in our case, the cavity detuning! on the
efficiency of this method of nonfeedback control.@S1063-651X~97!04903-9#

PACS number~s!: 05.45.1b, 42.65.Sf, 42.55.Lt
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I. INTRODUCTION

Since the appearance of the work of Ott, Grebogi, a
Yorke @1#, who proposed a method of controlling chaos,
active search for methods of chaos suppression in a l
number of dynamical systems has been conducted. M
methods are based on the stabilization of unstable peri
orbits embedded within a chaotic attractor. This can be r
ized by applyingfeedbackcontrol to an available system
parameter@1–3# or by periodic modulation of one of th
system parameters at the appropriate frequency@4–6#, which
is known asnonfeedbackcontrol. Although the methods o
nonfeedback control are generally not as effective as
feedback methods, they do not require prior knowledge
the system behavior. Therefore, they are particularly app
ing for systems whose state is impossible or difficult to m
sure in real time and where feedback control is very hard
realize ~e.g., some kinds of biological or chemical pr
cesses!.

The efficiency of nonfeedback control is known@4,6# to
depend strongly on the frequency of the control modulati
At the resonant frequency~generally, this means that th
ratio between the control frequency and a characteristic
quency of the system is a rational number! a small paramet-
ric perturbation is able to bring the system to a regular
gime @4,7–9#, while for chaos suppression by nonresona
~or near-resonant! modulation a relatively large perturbatio
amplitude is required@10#. In actual practice the nonresona
control is more convenient because it does not require
exact measurement of the characteristic frequency, but
counterpart the perturbation amplitude has to be larger t
in the resonant case. Recently, it was theoretically sho
that nonresonant parametric perturbations at either high@11#
or low @12# frequencies can also stabilize chaos. In the la
case Vilasecaet al. @12# have numerically shown that th
accurate stabilization of an unstable steady state in an
tonomous system can be achieved by large-amplitude s
modulation~in comparison with the characteristic frequenc!
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of a control parameter. They have also made the sugges
about the possibility of taming chaos in a nonautonomo
system by a nonfeedback slow modulation. The phys
mechanism of this phenomenon lies in the variation of
conditions so that the system passes back and forth thro
an instability point.

In this work we present experimental evidence of contr
ling nonlinear dynamics by large-amplitude slow nonres
nant parametric modulation in a nonautonomous syst
namely, in a CO2 laser with modulated losses. In contra
with control methods that use small-amplitude perturbatio
and do not modify the shape of the stabilized cycle, in o
method the state of system becomes slowly modulated a
control frequency. As distinct from an autonomous syste
the characteristic frequency in our CO2 laser is determined
by an external modulation of the cavity losses. The appli
bility of the slow modulation technique for controlling non
linear dynamics in such a system is based on the comb
effect of two well-known features of a modulated class
laser~such as our CO2 laser!. They are~i! the existence of a
minimum in the period-doubling instability boundaries ne
the relaxation oscillation frequency@13,14# and ~ii ! a delay
of the bifurcation when the control parameter is swe
through the instability@15#. Let us consider in greater deta
each of these features.

~i! The first feature was observed by Tredicceet al. @13#
in a CO2 laser with a modulated parameter at the drivi
frequencyf 0. They found some inverted resonances in t
amplitudeV0 of the driving signal versus the driving fre
quency@see Fig. 1~a!#, at which the period-doubling bound
aries are located at the minimal driving amplitude. Due to
interaction between the driving frequency and the relaxat
oscillation frequencyf r , one such resonance occurs wh
the driving frequency matches the frequency of the rel
ation oscillations (f 05 f r). It is known ~see, for example,
@16#! that f r depends on the cavity losses and gain. Th
varying the laser gain~by changing, for instance, the cavit
detuning!, one can choose the operating point in the ph
diagram. For example, if the operating point is chosen at
resonance (f 05 f r) in the chaotic region (V05Vch), one can
get a bifurcation diagram involving a sequence of per
doublings~i.e.,T-2T-4T-•••-chaos! followed by the inverse
process ~chaos-•••-4T-2T-T), varying quasistatically the
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driving frequency near the relaxation oscillation frequency
the relaxation oscillation frequency near the driving fr
quency. Such diagrams have been called ‘‘bubbles’’ or ‘‘p
riod bubbling’’ @17,18#.

~ii ! It is known that near the onset of an instability th
system needs a relatively large time to reach a steady
@15#. When the sweeping rate of the control paramete
increased, the bifurcation diagram exhibits a dynamic de
mation. The postponement of bifurcations on the bifurcat
diagram due to the sweeping rate of the control param
was experimentally observed in many systems~e.g., in an
electrical circuit@19# and lasers@20,21#! and was theoreti-
cally treated by Mandelet al. @15#.

In our experiments we combine both of these effec
keeping the driving frequency close to the relaxation osci
tion frequency ~i.e., close to the resonance!, we slowly
modulate the relaxation oscillation frequency to get bubb
by changing the cavity length. In such a manner we cause

FIG. 1. ~a! Schematic phase diagram in the parameter sp
The operating point can be chosen by varying the driving amplit
V0 to be equal toV2T (2T regime!, V4T (4T regime!, or Vch ~cha-
otic regime!. ~b! Schematic of steady-state laser intensity ver
control signal. The picture illustrates the choice of the opera
point ~atV1

0 andI 0). The periodic modulation of the cavity detunin
at the voltageV1 applied to the piezoceramic leads to the approp
ate modulation of the laser intensityI at the frequencyf 1.
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laser to pass through the boundaries of period doubling
the parameter space@see Fig. 1~a!#. The proper choice of the
control frequency allows one to postpone the bifurcations
that the delay time becomes longer that the half period of
slow modulation and some bifurcations are ‘‘passed ove
or scrambled because of dynamical effects@22#. Thus we can
say that the slow periodic modulation stabilizes the syste
We should add that even when the initial point is chosen
of the resonance~i.e., whenf 0Þ f r), the slow modulation of
the relaxation oscillation frequency would provide a simi
effect if the system passes through instability points, but w
lower efficiency.

e.
e

s
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-

FIG. 2. Stroboscopic measurements of laser intensity at diffe
control frequencies.~a! Without control modulation the laser ope
ates in a 2T regime. ~b! f 15200 Hz. ~c! f 15850 Hz. ~d! f 153
kHz. ~e! f 155 kHz.V054 V. The modulation depthM'40%.
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FIG. 3. ~a! 4T-periodic time trace and corresponding power spectrum stabilized with slow modulation to~b! the 2T regime ~at
V151.5 V,M'15%) and to~c! theT regime~at V153 V, M'40%). f 155 kHz.V056 V. The frequencyf 1 and its satellites appear in
the spectra.
w
th
th
c
an
a
ys

o
-
a
rk
g

-

z
a
A

u-
are
ng
al

nal
ing,

a
rks

w
in

po-

ap-
la-
The rest of the paper is organized as follows. In Sec. II
describe the experimental setup. In Sec. III we show how
slow parametric modulation decreases the periodicity of
system and investigate the influence of the control frequen
In Sec. IV we demonstrate with experimental time series
power spectra the stabilizing effect of the slow modulation
different modulation amplitudes on the weakly chaotic s
tem. Finally, conclusions are given in Sec. V.

II. EXPERIMENTAL SETUP

The experiments have been performed on a single-m
CO2 laser with modulated losses via an elasto-optic KRS
modulator inserted in the laser cavity. The experimental
rangement is similar to that described in previous wo
@23#. An electric signal is applied to the modulator providin
the time-dependent cavity losses. This signal~the driving one
for our system! V0sin(2pf0t) has a frequencyf 0599 kHz
and an amplitudeV0, which provides the choice of the ap
propriate operating point in the parameter space~i.e., 2T,
4T, or chaotic regime!; see Fig. 1~a!. The frequency of the
relaxation oscillations of our laser is approximately 100 kH

The output laser intensity is detected with
CdxHg12xTe detector and displayed on a Tektronix DS
e
e
e
y.
d
t
-

de
5
r-
s

.

602A digitizing signal analyzer that performs the power Fo
rier transform of the signal. Stroboscopic measurements
carried out with a Tektronix 2440 digital oscilloscope usi
the periodT51/f 0 of the loss modulation as an extern
clock for sampling the laser intensity.

The control signalV1(t)5V1
01V1sin(2pf1t) is applied to

the piezotranslator that tunes the output mirror. This sig
produces the appropriate changes in the cavity detun
which are proportional to the constant componentV1

0 and to
the alternative componentV1sin(2pf1t) of the signal voltage.
A theoretical description of the impact of detuning on
single-mode modulated laser can be found in several wo
~see, for example,@24#!.

To clarify the situation under consideration we sho
schematically in Fig. 1~b! the Lorenz shape of the laser ga
in the units of the steady-state laser intensityI vs the voltage
V1
0 applied to the piezotranslator. With the constant com

nentV1
0 we choose the initial point~at I5I 0) to be out of the

resonance, in the domain where the intensity depends
proximately linearly on the detuning. Thus periodic modu
tion of the cavity length~with amplitudeV1) leads to peri-
odic modulation of the laser intensity~with amplitudeDI )
and hence of the relaxation oscillation frequency~in the
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range of about65 kHz! @16#. As a consequence, the who
phase diagram of Fig. 1~a! oscillates at the control frequenc
f 1 in the parameter space, in the horizontal direction, n
the initial point, i.e., near the driving frequencyf 0. In this
condition, the system crosses back and forth the instab
boundaries.

Since the response of the piezoelectric ceramic depe
on the modulation frequencyf 1, we introduce the modula
tion depthM52DI /I 0. This allows one to compare the st
bilization effect at different signal frequencies.

III. STABILIZATION OF PERIODIC ORBITS

In this section we study the effect of the slow parame
modulation on the laser response when without this mod
tion the laser operates in a periodic regime. In other wo
by changing the amplitudeV0, we first select the operatin
point in the phase diagram in order to obtain, for instance
2T regime~at V054 V! @see Fig. 1~a!#. Next, we apply the
slow modulation of the cavity detuning. As a result, t
phase diagram moves forward and backward with the
quencyf 1 and the laser dynamics involves successivelyT
andT regimes.

In Fig. 2 we show several stroboscopic diagrams obtai
at different control frequenciesf 1. Without modulation
(V150) the laser operates in a 2T regime @see Fig. 2~a!#.
With slow but relatively large modulation~the modulation
depthM'0.4) the ‘‘bubbles’’ appear@see Figs. 2~b! and
2~c!#, i.e., the 2T- andT-periodic regimes successively alte
nate during one period of the control modulation. On furth
increasing f 1, the ‘‘bubbles’’ disappear and only
T-periodic regime is obtained@see Figs. 2~d! and 2~e!#,
which is modulated at the control frequency.

FIG. 4. Stroboscopic measurements that represent the tran
mation of chaos to periodically alternated 2T periodic and chaotic
motions.~a! Without control modulation.~b! With control modula-
tion at f 15200 Hz,M'15%.V0510 V.
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In our experiments we observed dynamical bistability
fects even at very low sweeping rate of the control param
~at several hertz!. These effects manifest themselves in t
fact that the transition betweenT and 2T regimes and the
reverse transition are different@see Figs. 2~b! and 2~c!# be-
cause in one case the perturbationV1(t) is increasing while
in the other it is decreasing. As indicated in@20#, the width
of the dynamically induced ‘‘bistable’’ region in the bifurca
tion diagrams at forward and backward sweeping of the c
trol parameter varies as the square root of the rate of cha
of the bifurcation parameter in accordance with the pred
tion of Mandel et al. @15# on a nonautonomous quadrat
map. With increasing modulation frequency, the perio
doubling bifurcation is postponed so that the bifurcation do
not appear during the half period of the control modulatio
Thus there is a lowest limit of the control frequency whe
the period bubbling transforms to a single-periodical mo
ment. In our case this limit frequency is equal to abou
kHz.

Figure 3 illustrates the suppression of an initial 4T regime
~at V056 V! with the time series and corresponding pow
spectra. The initial 4T regime atV150 V is shown in Fig.
3~a!. Increasing the control amplitude toV151.5 V, the
4T-periodic regime disappears and the system transfer
2T-periodic regime@see Fig. 3~b!#; then, with further in-
creasingV1 to 3 V, the 2T regime also disappears and on
period-T remains@see Fig. 3~c!#, which is slowly modulated
at f 1. It is clearly seen that with increasingV1, the frequency
f 1 and difference frequencies appear in the spectra@see Figs.
3~b! and 3~c!#. Thus, choosing the operation points at t
resonance (f r5 f 0) and starting from one subharmonic fre
quency ~e.g., atV05V2T or V4T) @see Fig. 1~a!#, we can
stabilize the system over different periodic regimes
changing the amplitudeV1 of the control signal.

IV. INHIBITION OF CHAOS

Let us consider the effect of the slow modulation of t
detuning in the case where the initial state is chao
@V05Vch510 V in Fig. 1~a!#. In deciding on the operation
point, the best conditions for chaos suppression are achie
when the control parameter, during its excursion, crosses
the period-doubling bifurcation boundaries@12#. In our case,
since we have chosen the cavity detuning~or the voltage
applied to the piezotranslator! as a control parameter, th
amplitude of the modulation is restricted by the half-width
the gain shape@see Fig. 1~b!#. This imposes a limitation on
the dynamic range of the variation of the relaxation oscil
tion frequency. Because of the small dynamic range we c
not eliminate chaos completely, but decrease essentially
‘‘degree of chaos,’’ or complexity of the motion, in the sy
tem. We demonstrate this effect with time series and po
spectra.

In Fig. 4 we show how the slow modulation influences t
laser dynamics when the initial state is chaotic. Figure 4~a!
displays the stroboscopic measurement of the laser inten
in the absence of the control modulation. In the presence
the control modulation, stable 2T regions appear in the lase
output and alternate periodically with chaotic intervals. W
have observed this periodic alternation withf 15 30, 200,
2000, and 5000 Hz. One stroboscopic diagram~for f 15200

or-
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FIG. 5. Chaotic time traces and corresponding power spectra partially stabilized to the 2T regime at different modulation amplitude
V1. ~a! V150. ~b! V153 V, M'20%. ~c! V156 V, M'35%. ~d! V158 V, M'75%.V0510 V, f 152 kHz.
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Hz! is shown in Fig. 4~b!. It is remarkable that no othe
periodic cycles (4T, 8T, etc.! are observed in the laser ou
put at control frequencyf 1>30 Hz. The main possible rea
son for the disappearance of the other periodic regimes is
small range of their existence in the phase diagram in c
parison with 2T-periodic and chaotic areas@Fig. 1~a!#. Due
to the dynamical deformation they do not appear in the la
response.

In Fig. 5 we demonstrate with the chaotic time series a
corresponding spectra the effect of modulation amplitude
the inhibition of chaos at the modulation frequencyf 152
kHz. BeforeV1 is applied, the power spectrum displays
broadband feature that is a characteristic of chaos@see Fig.
5~a!#. In the presence of the control modulation, one can
from the power spectra shown in Figs. 5~b!–5~d! that the
level of the broadband noise decreases and that sharp lin
f 0/2 as well as the spikes atf 1 and its harmonics appear i
he
-

er

d
n

e

s at

the spectra. This indicates that the degree of chaos is red
and the chaotic motion is partially converted to t
2T-periodic regime. Increasing the amplitude of the cont
modulation up to 75% modulation@see Fig. 5~d!# does not
allow the system to reach theT-periodic range in the param
eter space because the cavity detuning is limited by the h
width of the laser gain shape@see Fig. 1~b!# and does not
lead to a substantial change in the relaxation oscillation
quency. However, at very high control amplitud
M5100% and frequencyf 1>5 kHz both the 2T-periodic
and chaotic cycles almost disappear along with lasing. A
consequence, the laser operates in the pulsed regime
T-periodic cycles~Fig. 6!. No other periodic regimes ar
observed either in the time domains or in the power spec
Due to pulsed lasing, the spikes corresponding to the mo
lation frequencyf 1 , as can seen from Fig. 6~b!, become very
large.



ng
a
W
te
ity
se
th
la
f

to
th

e
be

oice

, a
icu-
the

ot
thod
the
n-
ot
ser
-
n-

a
to
us

iple
he
ffi-
fre-
p-

ion
cal
dif-
har-
trol
the
x-
orts
hing

de

5-

2460 55PISARCHIK, CHIZHEVSKY, CORBALÁN, AND VILASECA
V. CONCLUSION

In this article we have shown that the idea of controlli
nonlinear dynamics by a slow parametric modulation c
successfully be applied to a nonautonomous system.
have demonstrated in experiments with a loss-modula
CO2 laser that by means of a slow modulation of the cav
length one can control the nonlinear dynamics of the la
This becomes possible due to the combined effect of
delay occurring in a swept bifurcation and the particu
structure of the periodicity regions in the phase diagram o
CO2 laser with modulated losses.

The addition of a slow parametric modulation is able
stabilize the periodic orbits or, in other words, to reduce
periodicity of a nonlinear system~e.g., from 2T to T or from
4T to 2T and to T! when the initial state is periodic. Th
transformation of the dynamic state from one periodic

FIG. 6. ~a! T-periodic pulses of lasing and~b! corresponding
power spectrum atf 155 kHz andV1510 V. V0510 V.
tt
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havior to another one can be performed by the proper ch
of the modulation amplitude and frequency.

Although we have not been able to fully stabilize chaos
certain inhibition of chaos has been demonstrated. In part
lar, we managed to transform the chaotic behavior to
periodically alternated 2T and chaotic motions or to the
pulsedT-periodic regime. Other periodic regimes were n
detected in the laser output. The disadvantage of the me
used is a slow modulation of the laser output. Because of
narrow dynamic range of the modulation of the cavity detu
ing, limited by the half-width of the gain shape, we did n
succeed in eliminating chaos completely and the driven la
did not reach theT-periodic regime. However, a similar ap
proach, in our opinion, may be applied by modulating a
other parameter~for example, the discharge current! that
probably will give more efficiency in chaos suppression.

Although our experiments have been performed with
laser, the approach employed in this work can be applied
many different nonlinear systems including autonomo
ones. This method does not require anya priori knowledge
of the system state or a feedback loop. The main princ
implies a slow but relatively large external modulation of t
control parameter. However, it should be noted that the e
ciency of the stabilization depends on the amplitude and
quency of the control modulation. It is important to find o
timal parameters in each concrete case.

Perhaps the method of stabilization by a slow modulat
is already working in nature. Many self-organized dynami
systems have two parameters that are modulated at two
ferent frequencies. One of them may be considered as a c
acteristic high frequency, the other, much lower, as a con
frequency that stabilizes the system. For instance, from
dynamical point of view a human body can provide an e
ample of such a system. The frequency of the breath supp
in a stable state the heart rhythm and deep slow breat
can stabilize the fast heart rhythm~see, for instance,@25# and
references therein!.
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