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Experimental control of nonlinear dynamics by slow parametric modulation
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We provide experimental evidence that a slow parametric modulation can control dynamical regimes and
inhibit chaos in a nonlinear system. We demonstrate this effect in a loss-modulateth€#® We show the
influence of the amplitude and frequency of the control modulatiorour case, the cavity detunihgn the
efficiency of this method of nonfeedback cont{@1063-651X97)04903-9

PACS numbe(s): 05.45:+hb, 42.65.Sf, 42.55.Lt

I. INTRODUCTION of a control parameter. They have also made the suggestion
about the possibility of taming chaos in a nonautonomous
Since the appearance of the work of Ott, Grebogi, andystem by a nonfeedback slow modulation. The physical
Yorke [1], who proposed a method of controlling chaos, anmechanism of this phenomenon lies in the variation of the
active search for methods of chaos suppression in a larggonditions so that the system passes back and forth through
number of dynamical systems has been conducted. Mangn instability point.
methods are based on the stabilization of unstable periodic In this work we present experimental evidence of control-
orbits embedded within a chaotic attractor. This can be realing nonlinear dynamics by large-amplitude slow nonreso-
ized by applyingfeedbackcontrol to an available system nant parametric modulation in a nonautonomous system,
parametef1-3] or by periodic modulation of one of the namely, in a CQ laser with modulated losses. In contrast
system parameters at the appropriate frequése], which ~ with control methods that use small-amplitude perturbations
is known asnonfeedbackcontrol. Although the methods of and do not modify the shape of the stabilized cycle, in our
nonfeedback control are generally not as effective as th&ethod the state of system becomes slowly modulated at the
feedback methods, they do not require prior knowledge ofontrol frequency. As distinct from an autonomous system,
the system behavior. Therefore, they are particularly appeathe characteristic frequency in our GQaser is determined
ing for systems whose state is impossible or difficult to meaby an external modulation of the cavity losses. The applica-
sure in real time and where feedback control is very hard tdility of the slow modulation technique for controlling non-
realize (e.g., some kinds of biological or chemical pro- linear dynamics in such a system is based on the combined
cessep effect of two well-known features of a modulated class-B
The efficiency of nonfeedback control is know#h6] to  laser(such as our C@lase). They are(i) the existence of a
depend strongly on the frequency of the control modulationminimum in the period-doubling instability boundaries near
At the resonant frequencygenerally, this means that the the relaxation oscillation frequendy3,14 and (ii) a delay
ratio between the control frequency and a characteristic freef the bifurcation when the control parameter is swept
quency of the system is a rational numbarsmall paramet- through the instability15]. Let us consider in greater detail
ric perturbation is able to bring the system to a regular re€ach of these features.
gime [4,7-9, while for chaos suppression by nonresonant (i) The first feature was observed by Tredieteal. [13]
(or near-resonapmodulation a relatively large perturbation in a CO, laser with a modulated parameter at the driving
amplitude is requirefi10]. In actual practice the nonresonant frequencyf,. They found some inverted resonances in the
control is more convenient because it does not require themplitudeV, of the driving signal versus the driving fre-
exact measurement of the characteristic frequency, but asquency[see Fig. 18)], at which the period-doubling bound-
counterpart the perturbation amplitude has to be larger thaaries are located at the minimal driving amplitude. Due to the
in the resonant case. Recently, it was theoretically showinteraction between the driving frequency and the relaxation
that nonresonant parametric perturbations at either High  oscillation frequencyf,, one such resonance occurs when
or low [12] frequencies can also stabilize chaos. In the lattethe driving frequency matches the frequency of the relax-
case Vilasecat al. [12] have numerically shown that the ation oscillations {y=f,). It is known (see, for example,
accurate stabilization of an unstable steady state in an a(i16]) that f, depends on the cavity losses and gain. Thus,
tonomous system can be achieved by large-amplitude slowarying the laser gaifby changing, for instance, the cavity
modulation(in comparison with the characteristic frequency detuning, one can choose the operating point in the phase
diagram. For example, if the operating point is chosen at the
resonancef(,=f,) in the chaotic region\(,=V*°"), one can
*Permanent address: B. |. Stepanov Institute of Physics, Belaruget a bifurcation diagram involving a sequence of period
Academy of Sciences, 220072 Minsk, Belarus. doublings(i.e., T-2T-4T-- - - -chao$ followed by the inverse
TFAX: +34-3-5812155. Electronic address: corbalanr@cc.uab.egprocess (chaos- - - -4T-2T-T), varying quasistatically the
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FIG. 1. (a) Schematic phase diagram in the parameter space. 120}
The operating point can be chosen by varying the driving amplitude )
V, to be equal tov?" (2T regime, V4T (4T regime, or V" (cha- ] O e
otic regimg. (b) Schematic of steady-state laser intensity versus (e) 0 [ s e
control signal. The picture illustrates the choice of the operating
point (atV(l’ andl ). The periodic modulation of the cavity detuning of
at the voltageV/, applied to the piezoceramic leads to the appropri- 0 100 500 300 200

ate modulation of the laser intensityat the frequency ;. .
¥ quencyy Number of periods T

driving frequency near the relaxation oscillation frequency or

the relaxation oscillation frequency near the driving fre- ) ) ) )

quency. Such diagrams have been called “bubbles” or “pe- FIG. 2. Stroboscopic measurements of laser intensity at different

riod bubbling” [17,18 control frequenciesi@ Without control modulation the laser oper-

.. . . - ates in a I regime.(b) f;=200 Hz.(c) f;=850 Hz.(d) f;=3
(i) It is known tha_t near the onset of an instability the kHz. (&) f,=5 EHZ.V0:41V. The modulatlion depth%40°}o.
system needs a relatively large time to reach a steady state
[15]. When the sweeping rate of the control parameter igaser to pass through the boundaries of period doublings in
increased, the bifurcation diagram exhibits a dynamic deforthe parameter spa¢see Fig. 1a)]. The proper choice of the
mation. The postponement of bifurcations on the bifurcatiorcontrol frequency allows one to postpone the bifurcations so
diagram due to the sweeping rate of the control parametdhat the delay time becomes longer that the half period of the
was experimentally observed in many systefeg., in an  slow modulation and some bifurcations are “passed over”
electrical circuit[19] and laserd20,21]) and was theoreti- or scrambled because of dynamical effd@&|. Thus we can
cally treated by Mandett al. [15]. say that the slow periodic modulation stabilizes the system.

In our experiments we combine both of these effectsWe should add that even when the initial point is chosen out
keeping the driving frequency close to the relaxation oscilla-of the resonancé.e., whenfy# f,), the slow modulation of
tion frequency(i.e., close to the resonancewe slowly the relaxation oscillation frequency would provide a similar
modulate the relaxation oscillation frequency to get bubblegffect if the system passes through instability points, but with
by changing the cavity length. In such a manner we cause thiewer efficiency.
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FIG. 3. (a) 4T-periodic time trace and corresponding power spectrum stabilized with slow modulatits) tbe 2T regime (at
V;=1.5V,M~15%) and to(c) the T regime(atV,=3 V, M~40%).f,=5 kHz.V,=6 V. The frequencyf, and its satellites appear in
the spectra.

The rest of the paper is organized as follows. In Sec. Il we602A digitizing signal analyzer that performs the power Fou-
describe the experimental setup. In Sec. Ill we show how theier transform of the signal. Stroboscopic measurements are
slow parametric modulation decreases the periodicity of thearried out with a Tektronix 2440 digital oscilloscope using

system and investigate the influence of the control frequencythe period T=1/f, of the loss modulation as an external
In Sec. IV we demonstrate with experimental time series an@|ock for sampling the laser intensity.

power spectra the stabilizing effect of the slow modulation at e control signaV/,(t) —vg+vlsin(27-rflt) is applied to
different modulation amplitudes on the weakly chaotic syshq piezotranslator that tunes the output mirror. This signal
tem. Finally, conclusions are given in Sec. V. produces the appropriate changes in the cavity detuning,
which are proportional to the constant compon\e‘ﬁntand to
Il. EXPERIMENTAL SETUP the alternative compone; sin(2sf4t) of the signal voltage.
theoretical description of the impact of detuning on a
ngle-mode modulated laser can be found in several works
see, for exampld,24]).
To clarify the situation under consideration we show

The experiments have been performed on a single-mocﬁ
CO, laser with modulated losses via an elasto-optic KRS-
modulator inserted in the laser cavity. The experimental ar-
rangement is similar to that described in previous works
[23]. An electric signal is applied to the modulator providing ; schematically in Fig. @) the Lorenz shape of the laser gain

the time-dependent cavity losses. This sigitiaé driving one in the units of the steady-state laser intensitys the voltage

for our system Vysin(2afgt) has a frequency ,=99 kHz V1 apphed to the piezotranslator. With the constant compo-
and an amplitude/,, which provides the choice of the ap- NentVs we choose the initial poirtat| =1o) to be out of the
propriate operating point in the parameter spéoe, 2T, resonance, in the domain where the intensity depends ap-
4T, or chaotic regimg see Fig. 1a). The frequency of the proximately linearly on the detuning. Thus periodic modula-
relaxation oscillations of our laser is approximately 100 kHz.tion of the cavity lengthiwith amplitudeV,) leads to peri-

The output laser intensity is detected with aodic modulation of the laser intensitwith amplitudeAl)

Cd,Hg,_,Te detector and displayed on a Tektronix DSA and hence of the relaxation oscillation frequenay the
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| (mV) ‘ In our experiments we ob;erved dynamical bistability ef-
fects even at very low sweeping rate of the control parameter
. . (at several herjz These effects manifest themselves in the
L R fact that the transition betwe€eh and 2T regimes and the
R L I R reverse transition are differefgee Figs. &) and Zc)] be-
100 . el 0o 0T . cause in one case the perturbathy(t) is increasing while
(a) R B in the other it is decreasing. As indicated[20], the width
50 T P of the dynamically induced “bistable” region in the bifurca-
o e I T ) tion diagrams at forward and backward sweeping of the con-
0 Sl i b P o e S trol parameter varies as the square root of the rate of change
of the bifurcation parameter in accordance with the predic-
i tedmy —— tion of Mandel et al. [15] on a nonautonomous quadratic

150" ;": d map. With increasing modulation frequency, the period-

. sl - e doubling bifurcation is postponed so that the bifurcation does
100F. - o e ' not appear during the half period of the control modulation.
(b) i . o P Thus there is a lowest limit of the control frequency where
50f: T the period bubbling transforms to a single-periodical move-
T e ment. In our case this limit frequency is equal to about 2
A : H -y kHz.
0 200 400 600 800 1000 Figure 3 illustrates the suppression of an initidl egime
Number of periods T (atVo=6 V) v.vit'h the timg series and co.rresponding power
spectra. The initial # regime atV,=0 V is shown in Fig.
3(a). Increasing the control amplitude t4,=1.5 V, the
FIG. 4. Stroboscopic measurements that represent the transfof-T-periodic regime disappears and the system transfers to
mation of chaos to periodically alternated Deriodic and chaotic 2T-periodic regime[see Fig. )]; then, with further in-
motions.(a) Without control modulation(b) With control modula-  creasingV; to 3 V, the 2T regime also disappears and only
tion atf,;=200 Hz,M~15%.V,=10 V. periodT remains[see Fig. &)], which is slowly modulated
atf,. Itis clearly seen that with increasing, the frequency
range of aboutt5 kHz) [16]. As a consequence, the whole f; and difference frequencies appear in the spdsea Figs.
phase diagram of Fig.(d) oscillates at the control frequency 3(b) and 3c)]. Thus, choosing the operation points at the
f1 in the parameter space, in the horizontal direction, nearesonance f( = f,) and starting from one subharmonic fre-
the initial point, i.e., near the driving frequendy. In this  quency (e.g., atVy,=V?2" or V*T) [see Fig. 1a)], we can
condition, the system crosses back and forth the instabilitgtabilize the system over different periodic regimes by
boundaries. changing the amplitud¥; of the control signal.
Since the response of the piezoelectric ceramic depends
on the modulation frequencfy;, we introduce the modula-
tion depthM =2Al/1,. This allows one to compare the sta-

IV. INHIBITION OF CHAOS

bilization effect at different signal frequencies. Let us consider the effect of the slow modulation of the
detuning in the case where the initial state is chaotic
IIl. STABILIZATION OF PERIODIC ORBITS [Vo=V"=10 V in Fig. 1(@]. In deciding on the operation

point, the best conditions for chaos suppression are achieved

In this section we study the effect of the slow parametricwhen the control parameter, during its excursion, crosses alll
modulation on the laser response when without this modulathe period-doubling bifurcation boundarigk?]. In our case,
tion the laser operates in a periodic regime. In other wordssince we have chosen the cavity detunifog the voltage
by changing the amplitud¥, we first select the operating applied to the piezotranslajons a control parameter, the
point in the phase diagram in order to obtain, for instance, amplitude of the modulation is restricted by the half-width of
2T regime(atVo=4 V) [see Fig. 1@]. Next, we apply the the gain shapésee Fig. 1)]. This imposes a limitation on
slow modulation of the cavity detuning. As a result, thethe dynamic range of the variation of the relaxation oscilla-
phase diagram moves forward and backward with the fretion frequency. Because of the small dynamic range we can-
guencyf; and the laser dynamics involves successively 2 not eliminate chaos completely, but decrease essentially the
andT regimes. “degree of chaos,” or complexity of the motion, in the sys-

In Fig. 2 we show several stroboscopic diagrams obtainetem. We demonstrate this effect with time series and power
at different control frequencies;. Without modulation spectra.
(V,=0) the laser operates in al2regime[see Fig. 2a)]. In Fig. 4 we show how the slow modulation influences the
With slow but relatively large modulatiofthe modulation laser dynamics when the initial state is chaotic. Figui® 4
depth M~0.4) the “bubbles” appeafsee Figs. &) and displays the stroboscopic measurement of the laser intensity
2(0)], i.e., the Z'- andT-periodic regimes successively alter- in the absence of the control modulation. In the presence of
nate during one period of the control modulation. On furtherthe control modulation, stablel2regions appear in the laser
increasing f;, the “bubbles” disappear and only a output and alternate periodically with chaotic intervals. We
T-periodic regime is obtaineflsee Figs. @) and 2e)], have observed this periodic alternation with= 30, 200,
which is modulated at the control frequency. 2000, and 5000 Hz. One stroboscopic diagr@on f, =200
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FIG. 5. Chaotic time traces and corresponding power spectra partially stabilized td tregiine at different modulation amplitudes
V,. (@ V,=0. (b) V;=3 V, M~20%. (c) V,;=6 V, M~35%.(d) V,=8 V, M~75%.V,=10 V, f,=2 kHz.

Hz) is shown in Fig. 4b). It is remarkable that no other the spectra. This indicates that the degree of chaos is reduced
periodic cycles (&, 8T, etc) are observed in the laser out- and the chaotic motion is partially converted to the
put at control frequency,=30 Hz. The main possible rea- 2T-periodic regime. Increasing the amplitude of the control
son for the disappearance of the other periodic regimes is thmodulation up to 75% modulatiofsee Fig. &d)] does not
small range of their existence in the phase diagram in comallow the system to reach tieperiodic range in the param-
parison with ZI'-periodic and chaotic aredfig. 1(a)]. Due eter space because the cavity detuning is limited by the half-
to the dynamical deformation they do not appear in the lasewidth of the laser gain shapeee Fig. 1b)] and does not
response. lead to a substantial change in the relaxation oscillation fre-
In Fig. 5 we demonstrate with the chaotic time series andjuency. However, at very high control amplitude
corresponding spectra the effect of modulation amplitude oM =100% and frequency,=5 kHz both the Z-periodic
the inhibition of chaos at the modulation frequeniGy=2 and chaotic cycles almost disappear along with lasing. As a
kHz. BeforeV; is applied, the power spectrum displays aconsequence, the laser operates in the pulsed regime with
broadband feature that is a characteristic of cHaes Fig. T-periodic cycles(Fig. 6). No other periodic regimes are
5(a)]. In the presence of the control modulation, one can seebserved either in the time domains or in the power spectra.
from the power spectra shown in Figs(bp-5(d) that the Due to pulsed lasing, the spikes corresponding to the modu-
level of the broadband noise decreases and that sharp lineslation frequencyf,, as can seen from Fig(l), become very
fo/2 as well as the spikes &t and its harmonics appear in large.
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(a) havior to another one can be performed by the proper choice

of the modulation amplitude and frequency.
120 Although we have not been able to fully stabilize chaos, a
certain inhibition of chaos has been demonstrated. In particu-
80} ' lar, we managed to transform the chaotic behavior to the

periodically alternated P and chaotic motions or to the
pulsedT-periodic regime. Other periodic regimes were not
detected in the laser output. The disadvantage of the method
0 | Il used is a slow modulation of the laser output. Because of the
L . narrow dynamic range of the modulation of the cavity detun-
08 10 12 ing, limited by the half-width of the gain shape, we did not
Time (ms) succeed in eliminating chaos completely and the driven laser
(b) did not reach th&-periodic regime. However, a similar ap-
proach, in our opinion, may be applied by modulating an-
fo other parameteffor example, the discharge currgrthat
probably will give more efficiency in chaos suppression.
Although our experiments have been performed with a
laser, the approach employed in this work can be applied to
many different nonlinear systems including autonomous
ones. This method does not require anpriori knowledge
of the system state or a feedback loop. The main principle

I (mV)

40

—t -
(=) o
(5] (=

S (arb.units)
—O;

10%L . . . implies a slow but relatively large external modulation of the

0 50 100 150 200 control parameter. However, it should be noted that the effi-

Frequency (kHz) ciency of the stabilization depends on the amplitude and fre-

guency of the control modulation. It is important to find op-
o _ ) timal parameters in each concrete case.

FIG. 6. (a) T-periodic pulses of lasing an(b) corresponding Perhaps the method of stabilization by a slow modulation

power spectrum at; =5 kHz andV; =10 V. V=10 V. is already working in nature. Many self-organized dynamical
systems have two parameters that are modulated at two dif-
V. CONCLUSION ferent frequencies. One of them may be considered as a char-

In this article we have shown that the idea of controlling acteristic high frequency, the other, much lower, as a control
nonlinear dynamics by a slow parametric modulation carfrequency that stabilizes the system. For instance, from the
successfully be applied to a nonautonomous system. Waynamical point of view a human body can provide an ex-
have demonstrated in experiments with a loss-modulate@MPple of such a system. The frequency of the breath supports
CO, laser that by means of a slow modulation of the cavityl" & Stable state the heart rhythm and deep slow breathing
length one can control the nonlinear dynamics of the lase/an stabilize the fast heart rhythisee, for instanc¢25] and
This becomes possible due to the combined effect of th&eferences therejn
delay occurring in a swept bifurcation and the particular
structure of t_he periodicity regions in the phase diagram of a ACKNOWLEDGMENTS
CO, laser with modulated losses.
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